101. 6
a + 4 b /6 a – 5 b = 6 ( a/ b) + 4 / 6 (
a / b – 5 = 6 x 4/3 + 4/ 6 x 4/3 – 5 = 8 + 4 8-5 = 12/3 = 4.
102. X/2y
= 6/7 X/y = (2 x 6/7 ) = 12/7.
X – y / X + y +X / y – 1 / X/y + 1 + 14 /19 = 12/7 -1 / 12 / 7 + 1 + 14 /
19 = (5/7) /
(19.7) + 14/19
= (5/7 x 7/19 ) + 14/19 = 5/19 + 14/19
= 19/19 = 1.
103. 1/b
= 4/5 and b/c = 15/16 = ( a/b x b/c ) = (4 / 5 x 15/16) a /c = 3/4
c² - a²/c² + a² = 1 – (a/c)²/ 1+ (a²/
c²) = 1 – (a/c)²/1 + (a/c)² = 1 – 9/16 / 1 + 9 /16 = (7
/16) / (25 /16) = 7 /
25
=
7/25.
104. (a – c ) –
(b + d ) = 6 and (c –d ) ( a + b ) =3
(
a – c) – (b + d) = 6 and (c –a) –( b + d) =3
(b
+ d) = (a –c) -6 and (b + d) = (c – a) -3
(
a –c ) = -6 = (c –a) -3
2
(a –c) =3
(
a-c) = 3/2 =1.5
105. X = a / a
– 1 = 1 + 1 / a -1 = 1 + y.
X >y
106. A is
positive and a < 1 1/a >
1. ( a + 1/a ) >
2
107. A /X + y/b
= 1 a /X = 1 –y/b = b – y /b X / a =b / b- y
B
/y + z/c = 1 z /c = 1 – b/y = y – b /
y c/z = y / y-b = -y / (b – y)
X/a
+ c/z = b/( b – y ) = (b – y / (b – y ) =1.
108. a² + b² =
45 ….(I) and b² + c² = 40
Subtracting,
we get: a² - c² =5 ( a + c) (a – c) =5.
(a
+ c) =5 and (a – c) =1.
Solving,
we get: a =3, c =2. Putting c =2 in (II), we get b =6.
109. a/3
= b/4 = c/7 = k (say). Then, a = 3k, b = 4k, c = 7k.
a + b + c / c = 3 k + 4 k + 7k / 7k = 14k / 7k = 2.
110. 3X
= 7 =7 X + 5 7 X – 3 X =2 4 X = 2 X =1/2.
Now, 3X + 7 = X² + p 3/2 + 7 =1/4 +
P
P = 17/2 – ¼ = 33/4 = 8 1/4.
=
8 1/4
No comments:
Post a Comment