101. Given exp. = (a + b)² - 4ab, where a = 476 and b=425
= (a –b)² = (475 – 425)² =(50)² = 2500.
102. 20z = (64)² (36)² 20z = (64 + 36) (64 – 36)
20z = 100 x 28 z = 100 x 28/20 = 140.
103. Let (46)² - X² = 4398 – 3066.
Then, (46)² - X² = 1332 X² = (46)² - 1332 = (2116 – 1332)
X² = 784 x=
784 = 28.

104. 
Given exp. = ( a + b )² ( a – b)² = 2 ( a² + b²) =2.


(a ²+ b² ) ( a² + b² )
105. 
Given exp. = = ( a + b )² ( a – b)² = 4ab =2.


ab ab
106. We know that ( 1 + 2 + 3 + ….+ n)= n (n + 1)/2
(1 + 2 + 3+…=(45x 46)/2 = 1035.
107. Required numbers are 2, 3 4, 6 …, 30.
This is an A.P. containing 15 terms.
Required sum = n/2 (first term + last term) = (2 + 30) = 240.
108. (1 + 52 +53 +... + 100)
= (1+2 = 3+…. +100) - (1 + 2 + 3 + …+ 50).
= (100 x 101\2 – 50 x 51 \2) = (5050 – 1275) = 3775.
109. Every such number must be divisible by L. C. M. of 4, 5, 6, i.e. 60.
Such numbers are 240, 300, 360, 420, 480, and 540.
Clearly, there are 6 such numbers.
110. Required numbers are 102, 108, and 114,996.
This is an A.P. with a = 102 and d = 6,
Let the number of it s terms be n. then,
a + (n – 1) d= 996 102 +( n -1 )x 6 = 996 n =150.
No comments:
Post a Comment